

GOBIERNO FEDERAL

SEMARNAT

EI PSHCVM

y los programas de recarga artificial de acuíferos y reúso de agua

Ernesto Espino de la O Gerencia de Agua Potable y Saneamiento Coordinación de Proyectos del Valle de México

Comisión Nacional del Agua

Viernes 10 de junio de 2011, 12:00 PM

Un plan integral de manejo del agua

1. Programa de Sustentabilidad Hídrica del VdeM, PSHCVM

- a. Administración integrada del agua y del agua residual, incluyendo obras para el control de inundaciones, tratamiento y reúso del agua residual y desarrollo de nuevas fuentes sustentables de suministro de agua potable.
- b. Atención especial al uso eficiente de la energía y a la emisión de gases efecto invernadero (GEIs).

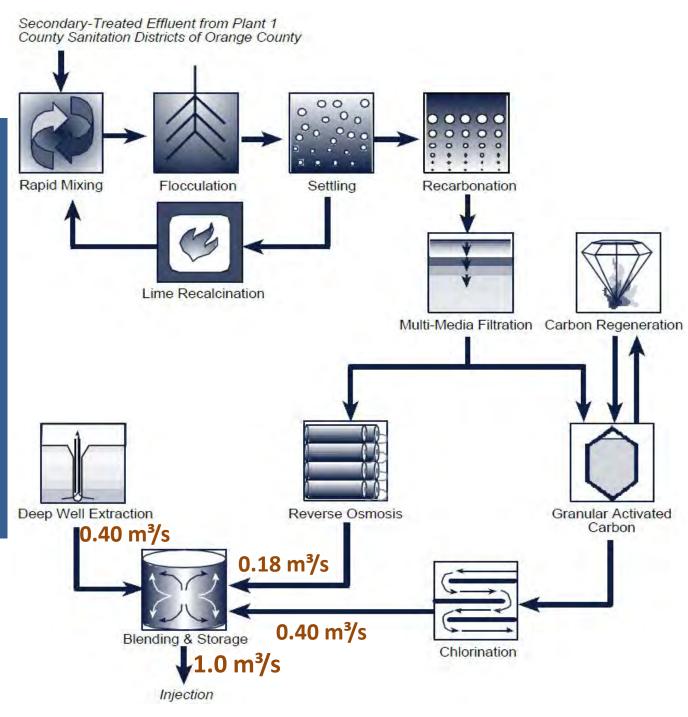
2. Principales objetivos del PSHCVM

- a. Tratar 100% de las aguas residuales, actualmente se trata menos del 15%,
- b. Reducir la sobre-explotación del acuífero en 15 m³/s,
- c. Desarrollar una nueva fuente, sustentable de suministro de agua para el Valle de México,
- d. Prevenir la inundación de zonas urbanas.
- e. Cerrar el ciclo del agua → alcanzar un desarrollo sustentable

GOBIERNO FEDERAL

SEMARNAT

Precedentes de reúso de aguas residual tratada para recarga de acuíferos


Nuevo tren de procesos de tratamiento en una planta emblemática

Factory 21

Inicio de operaciones en octubre de 1976

Orange County Groundwater
Replenishement System

GRS

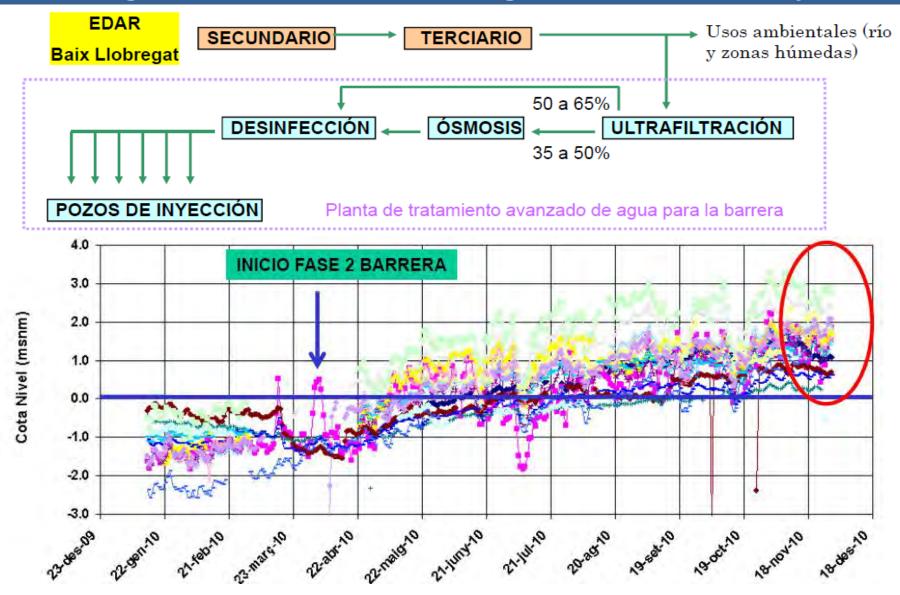
GWRS: calidad del agua

GWRS: Unidades de tratamiento

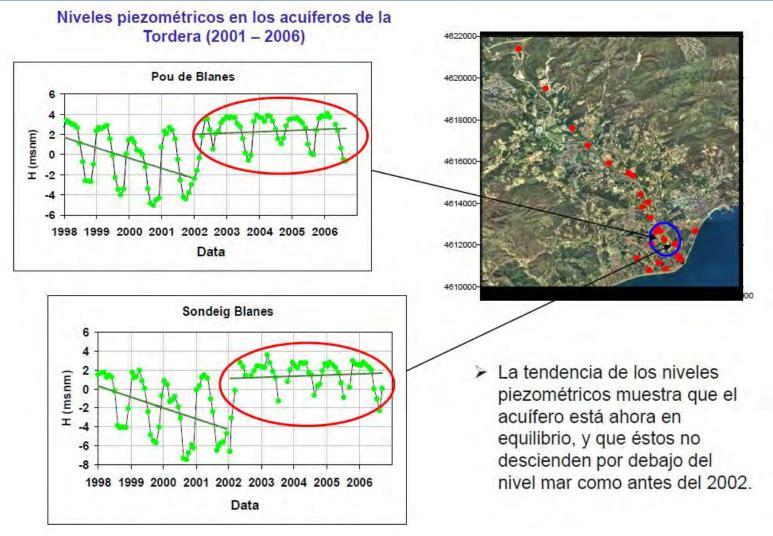
GWRS: Pozos de inyección en el predio de la planta

GWRS: Gastos y presiones en pozos de inyección

Sistema de recarga de acuíferos



Membrana de fibra hueca de microfiltración


Módulos de OI

Recarga del acuífero de Llobregat en Cataluña, España

Referencia: Felip Ortuño Gobern, Dpto. de Planificación de Abastecimiento, Agencia Catalana del Agua. Jornada sobre la Recarga Artificial de Acuíferos en Madrid, 14 de Abril de 2011

Recarga del acuífero de Tordera en Cataluña, España,

El caudal de agua que se destina a recarga de acuíferos es (abril 2011) de 0.7 m³/s. La previsión es que se alcance 1.3 m³/s en las cuencas internas de Cataluña

Referencia: Felip Ortuño Gobern, Dpto. de Planificación de Abastecimiento, Agencia Catalana del Agua. Jornada sobre la Recarga Artificial de Acuíferos en Madrid, 14 de Abril de 2011

PSHCVM: Un plan integral de manejo del agua

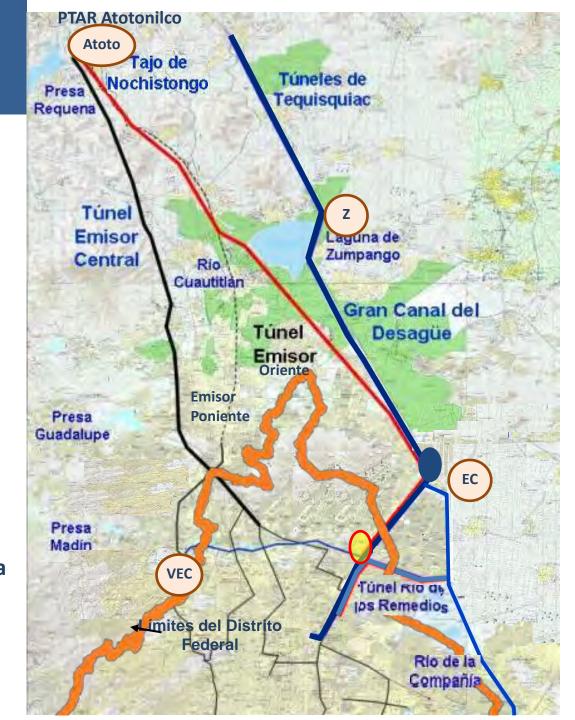
TEC = Túnel Emisor Central, 50 km de longitud, 6.5 m de diámetro, construido en 1975,
TEO = Túnel Emisor Oriente, 62 Km de longitud, 7 m de diámetro, en construcción,
PTAR = Planta Atotonilco de tratamiento de aguas residuales
UTR de AR = Unidades para tratamiento y reúso de agua residual, incl. recarga
Potabilización avanzada = Planta en estudio de 5 a 7 m³/s

Programa de obras estructurado en torno a: Tres ejes programáticos

- 1. Programa de sustitución gradual de agua de primer uso por agua residual tratada para riego agrícola dentro del Valle de México:
 - Unidad de saneamiento El Caracol, 2m³/s
 - Unidad de saneamiento Zumpango, 2 m³/s
 - Unidad de saneamiento Vaso El Cristo, 4 m³/s
- 2. Programa de recarga directa de acuíferos del Valle de México con agua residual tratada:
 - Unidad de saneamiento El Caracol, 1 m³/s en 1^a etapa
- 3. Programa de reciclado del agua del acuífero de Tula para suministro de agua potable:
 - Planta Atotonilco para sanear las aguas del Valle de Tula,
 - Proyecto Tula, por definir (5 m³/s en 1ª etapa?)

Unidades de tratamiento y reúso

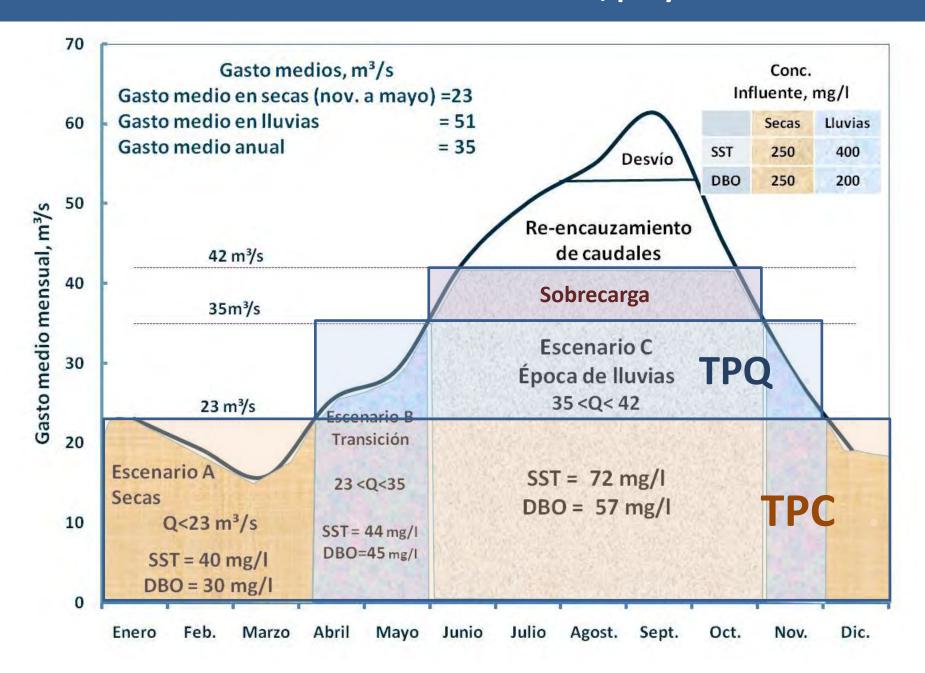
Unidades de tratamiento, reúso y/o recarga de aguas residuales


Atoto PTAR Atotonilco

Z PTAR Zumpango

VEC PTAR Vaso El Cristo

EC PTAR EL Caracol


* No se muestran las unidades para saneamiento de cauces y tratamiento de aguas de riego.

Características de la PTAR Atotonilco

- La ciudad de México tiene un sistema de drenaje combinado,
- Las lluvias son estacionales, el 85% de la precipitación anual cae en sólo cinco meses del año,
- Fuertes fluctuaciones estacionales en el caudal de aguas residuales
- 1. Tren de Procesos Convencionales, TPC: Gasto de diseño igual al gasto medio en época de secas, tratamiento biológico secundario con desinfección, el efluente apto para riego agrícola sin restricciones.
- 2. Tren de Procesos Químicos, TPQ: Gastos por encima del gasto medio de época de secas, tratamiento químico + filtración y desinfección, el efluente descarga al río El Salto que alimenta a la presa Endhó, para riego.

Gastos medios de salida del Emisor Central, proyección PSHCVM

Distribución de las unidades de tratamiento

Beneficios de la planta

- 1. Sociales: la población del valle de Tula no tiene porque vivir en un ambiente insalubre por recibir las descargas de aguas residuales del Valle de México sin el debido tratamiento,
- 2. Económicas: Opción de diversificación de cultivos en respuesta a demandas del mercado, optar por cultivos más redituables económicamente,
- 3. Ambientales: el riego con aguas limpias regenera la calidad de los acuíferos de la región y posibilita su aprovechamiento para fines ulteriores.

GOBIERNO FEDERAL

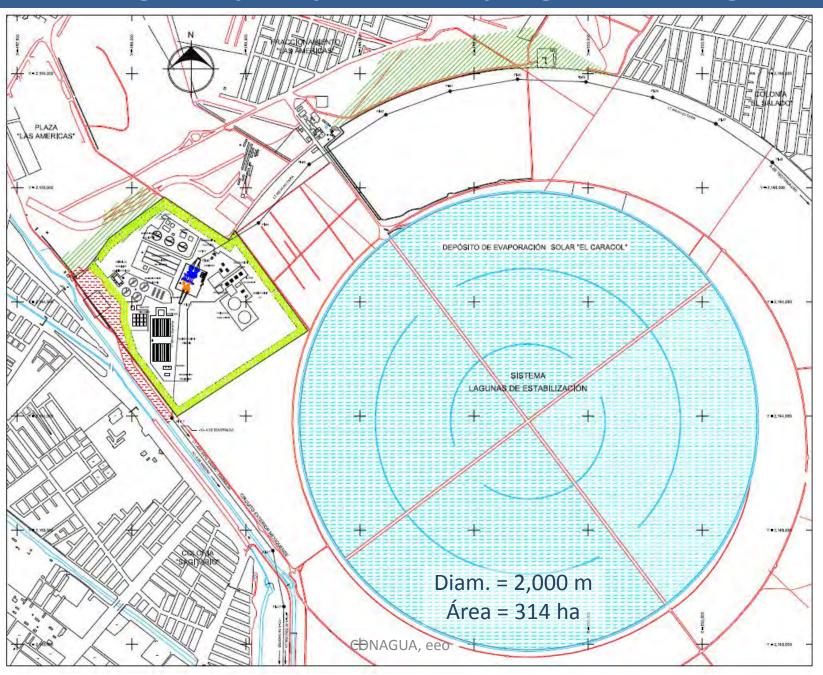
SEMARNAT

CONAGUA Cornisión Nacional del Agua

Unidad de Saneamiento El Caracol

Unidad de saneamiento y reúso El Caracol

Cuatro módulos independientes de 1 m³/s cada uno



Recarga de acuíferos, tratamiento avanzado, 1ª Etapa: 1 m³/s

Intercambio con agua de pozos usada en riego agrícola, 4,500 ha, tratamiento secundario, 1 m³/s

Riego de 2,500 ha de zona de mitigación ambiental (PELT), tratamiento secundario, 1 m³/s

Sistema lagunar para pulimento y regulación de gastos

Rescate ecológico de Vaso de Texcoco y zonas vecinas

Antes
Suelos
desertificados
salino-sódicos

Después

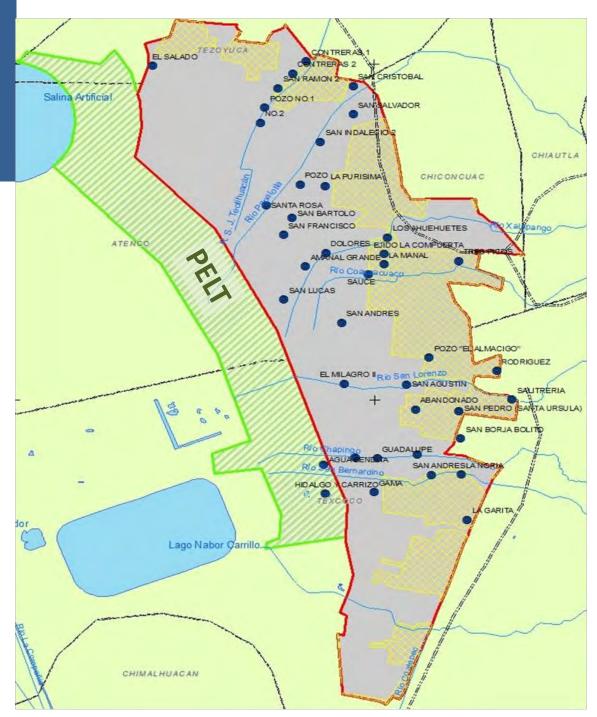
Praderas artificiales y cortinas de árboles

PELT y pozos agrícolas en la zona propuesta para riego con agua tratada

40 pozos @ de 30 l/s por pozos = 1,200 l/s

Agua tratada en los dos módulos = 2 m³/s

= 63 Mm³/año


Lámina = 1 m/año

Área regable = 6,300 ha

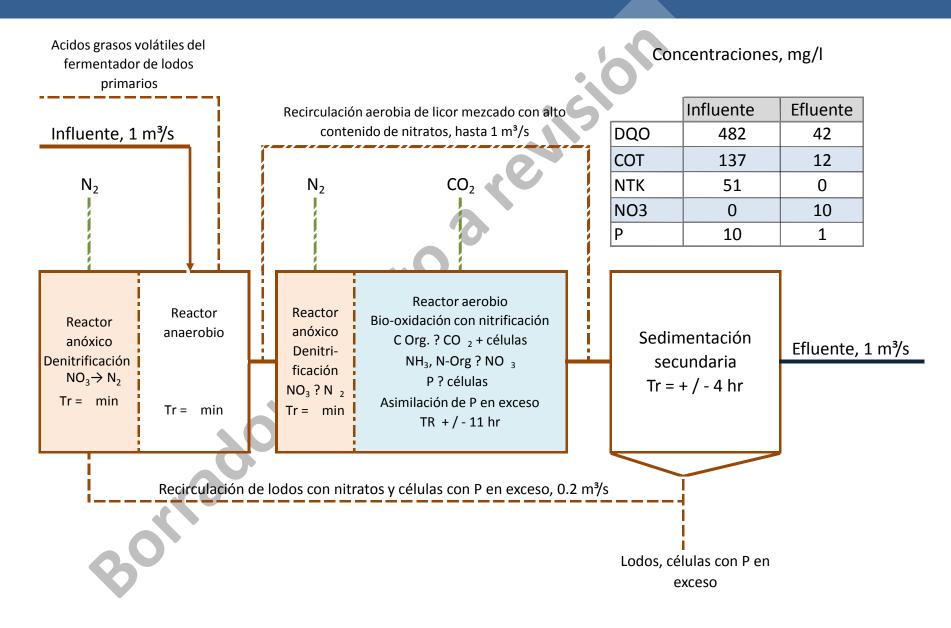
PELT: 1,800 a 2,500ha,

Zona agrícola: 4,500 ha

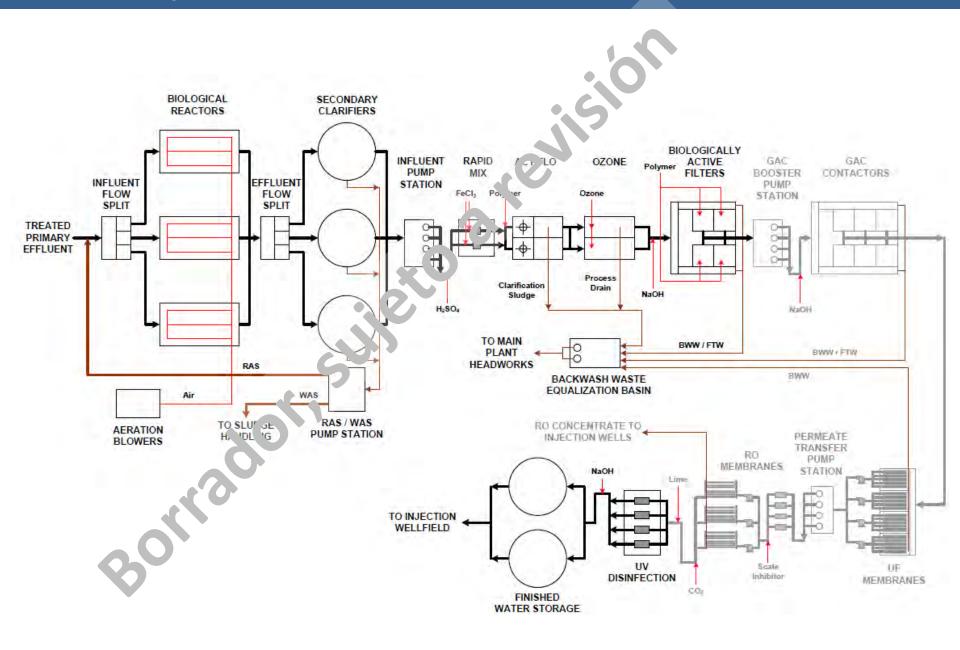
Proyecto El Caracol

Situación actual, costos, estudios de ingeniería

Estudios de ingeniería, primera etapa


1. Análisis de costo / beneficio	7. Pozos de demostración de recarga de acuíferos	
2. Calidad hidro-geoquímica del agua intersticial	8. Geofísica y modelación 3-D de subsuelo	
3. Estudio de factibilidad ambiental	9. Topografía	
4. Manifestación de impacto ambiental	10. Mecánica de suelos / análisis de cimentaciones	
5. Estudios piloto de tratabilidad del agua	11. Análisis de riesgo de contaminación de acuíferos	
6. Modelación de flujo de agua subterránea	12. Ingeniería básica de obras del proyecto v2	
Documentos de licitación: términos de referencia, bases de licitación y modelos de contratos CPS		

Costos estimados (año 2008)


Item		Costo estimado Millones \$
Primera Etapa	Módulo 1 Riego de zona de mitigación ambiental	518
	Módulo 2 Recarga de acuíferos	1,830
Segunda Etapa	Módulo 3 Riego agrícola	652
	Módulo 4 Reúsos industriales y comerciales	355
Suma		3,355

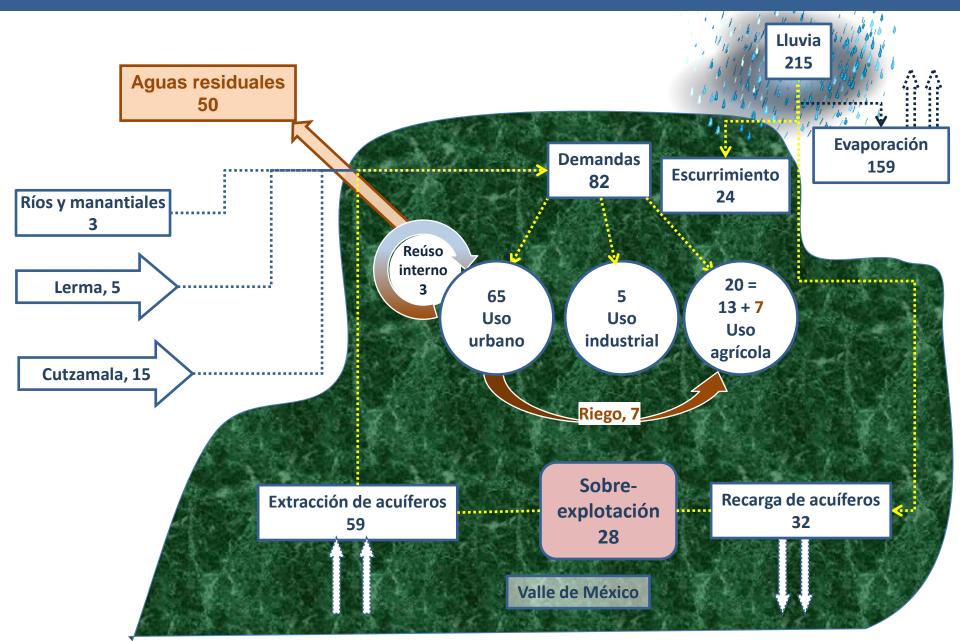
CONAGUA, eeo

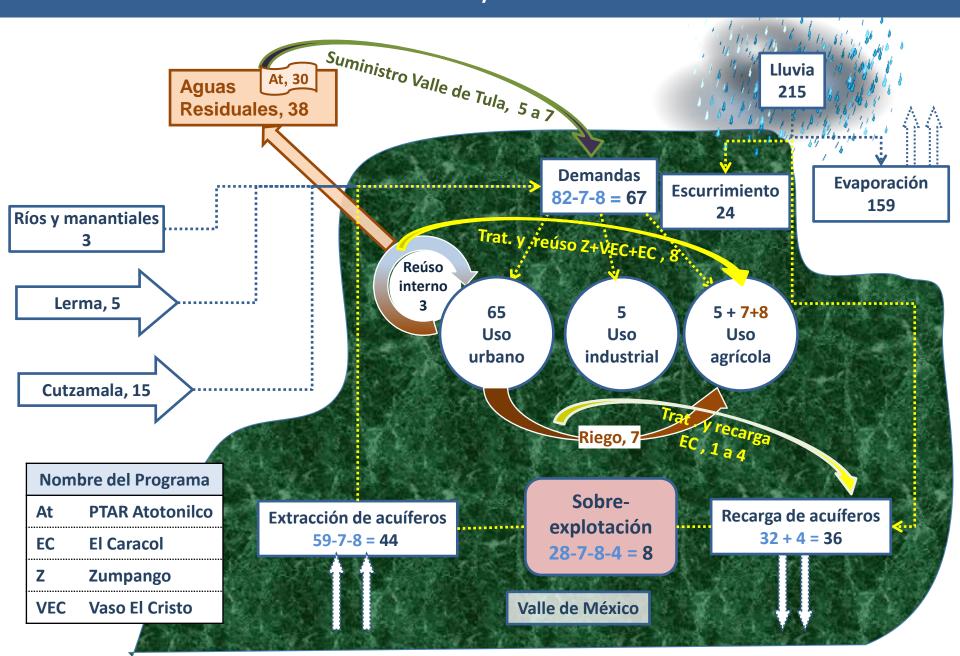
Remoción biológica de N y P, sistema Bardenpho, variante Johanesburgo

Tren de procesos en el módulo de tratamiento avanzado

Gobierno federal

SEMARNAT


Resultados



Balance medio anual en el Valle de México

m³/s, año 2008

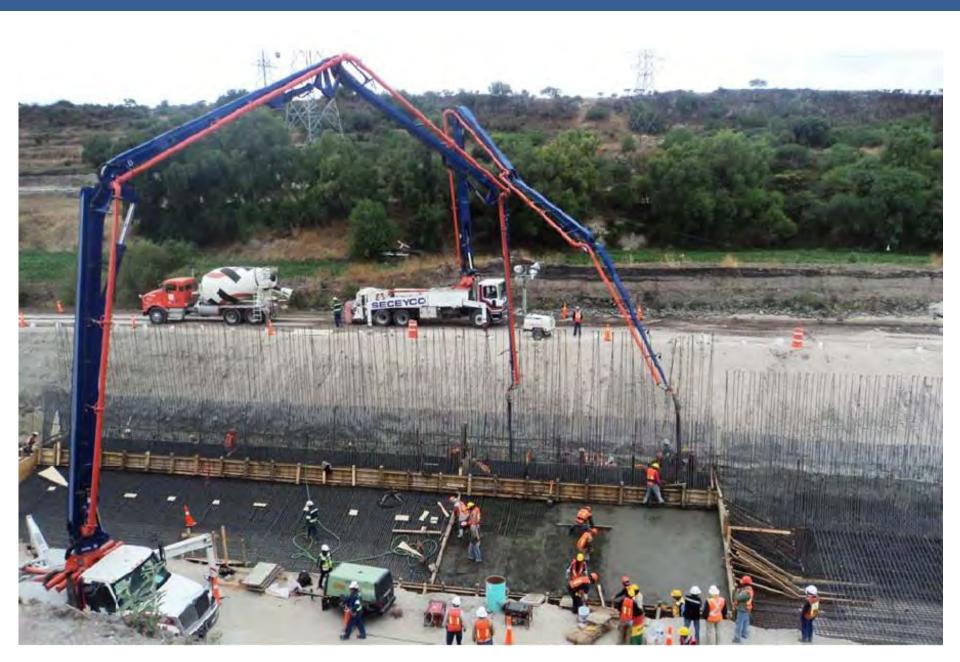
Balance de aguas en Valle de México con las obras del PSHCVM m³/s

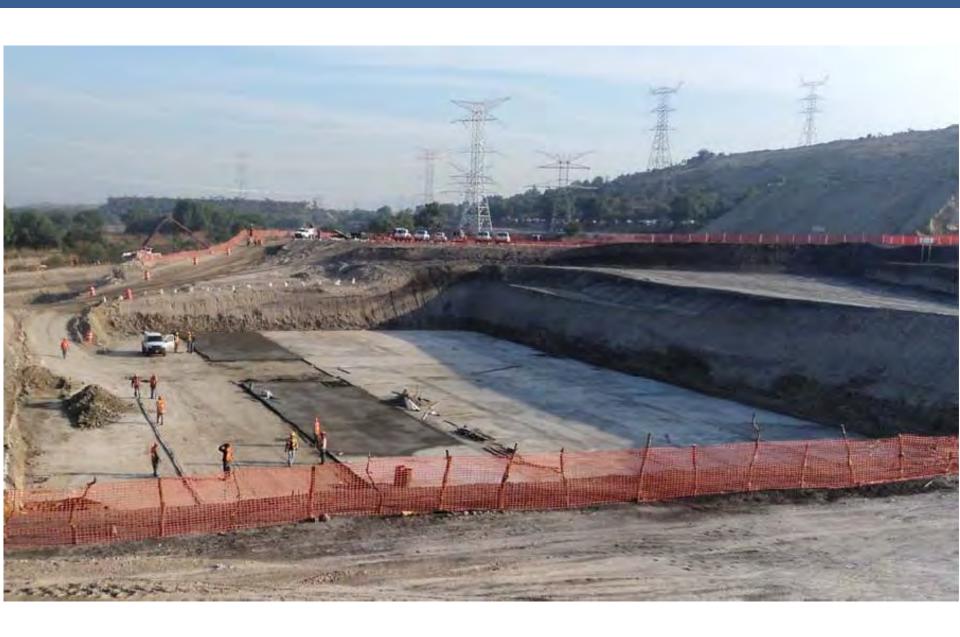
Gobierno federal


SEMARNAT

Gracias Preguntas

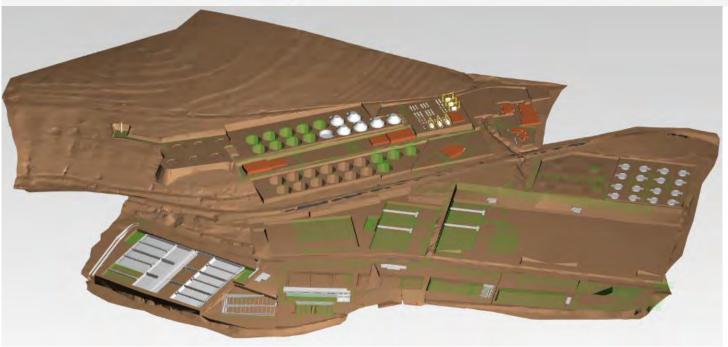
Vista panorámica de la planta Atotonilco terminada


Habilitado de acero en los digestores


Colado de losa de fondo de digestor

Colado de zapata de muro de protección

Plantilla en tanque de contacto de cloro



Time-Line: seis instantáneas

20 agosto 2011

1 octubre 2011

10 marzo 2012

12 enero 2013

23 febrero. 2013

Comentarios finales

Un desarrollo sustentable del agua en el Valle de México sólo será posible con un manejo integral del agua que incluya, como mínimo, los siguientes elementos:

- 1. Revertir las tendencias de sobre-explotación de los acuíferos:
 - a. Intercambiando, siempre que sea posible, agua residual tratada por agua de pozos, en particular en el riego de zonas agrícolas
 - b. Induciendo la recarga del acuífero por medios naturales o por recarga artificial con agua residual tratada
- 2. Desarrollar sistemas sustentables de suministro de agua a través del reciclado de agua de zonas agrícolas regadas con agua residual tratada y enfrentar los problemas de calidad del agua con técnicas avanzadas de potabilización,
- 3. Tratar todas las descargas de agua residual,
- 4. Ampliar los sistemas de drenaje y control de inundaciones para enfrentar los retos del cambio climático y la cambiante geografía física del Valle de México.

Currículum vitae ERNESTO ESPINO DE LA O

17 agosto 1940, Chihuahua, Chih.

FORMACIÓN ACADÉMICA

- Ingeniero Civil, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, N.L., 1957 1962
- Especialidad en Ingeniería Sanitaria, División del Doctorado, Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, D.F., 1964
- Maestro en Ciencias en Ingeniería Sanitaria, Universidad Nacional Autónoma de México, México, D.F., 1964
 1965.
- Ph.D. en Ingeniería Ambiental, The University of Texas, Austin, Texas, EUA, 1965 1968.

Cursos de especialización:

- Diseño de Plantas de Tratamiento de Aguas Residuales con Computadora, Univ. of Michigan, Ann Harbor, 1983.
- Modelos Matemáticos de Calidad del Agua, University of Florida, Gainesville, Fl., 1985.

EXPERIENCIA PROFESIONAL

- 2002 a la fecha.- Gerente de Agua Potable y Saneamiento, Coordinación de Proyectos del Valle de México,
 Comisión Nacional del Agua.
- 2000 a 2002.- Director General de Consultores Asociados en Proyectos Ambientales, S.A. de C.V.
- 1996 a 1999.- Gerente de Montgomery Watson México, S.A. de C.V.
- 1973 a 1995.- Director General de Diseños Hidráulicos y Tecnología Ambiental, S.A. de C.V.
- 1968 a 1972.- Ingeniero de Proyectos con *Engineering Science, Inc.*, en Estados Unidos, Brasil y Colombia.

GOBIERNO FEDERAL

SEMARNAT

Anexos

Salidas artificiales de drenaje

Tajo de Nochistongo

Inicia su construcción en 1607, se termina en 1788.

Gran Canal del Desagüe

- Inaugurado en 1900
- 47.5 km de longitud
- Desemboca en los túneles de Tequixquiac.

Emisor Central

- Inaugurado en 1975
- 50 km longitud
- 6.5 m de diámetro
- Capacidad: 170 m³/s

Estas obras, construidas para evitar inundaciones, exportan el agua residual y de lluvia al vecino estado de Hidalgo.

En 2009 se inició la construcción del Túnel Emisor Oriente de 62 km de largo con capacidad para desalojar 150 m³/s y conducirlas a la PTAR Atotonilco.

Volúmenes de agua en el Plan

- 1. Precipitación media en el Valle de México: 700 mm/año, 7,000 Mm³/año,
- 2. Volumen medio anual de agua residual a tratar en la PTAR Atotonilco: 33 m³/s, 1,000 Mm³/año,
- 3. Flujo de retorno de agua para potabilización para el Valle de México, 5 m³/s, 150 a 250 Mm³/año,
- 4. Caudal de agua a tratar en plantas de reúso de agua residual en el Valle de México: 9 a 10 m³/s, 300 Mm³/año.

Volúmenes de agua en el Plan

Concepto	Mm³/año	m³/s	Normalizado
Llluvia	6,771	215	100
Escurrimiento	747	24	11
Evaporación	5,027	159	74
Ríos y manantiales	85	3	1
Lerma	151	5	2
Cutzamala	470	15	7
Uso urbano	2,040	65	30
Uso industrial	145	5	2
Uso agrícola	397	13	6
Demandas	2,582	82	38
Aguas residuales fuera del VdeM	1,589	50	23
Riego con aguas residuales	214	7	3
Reúso interno	105	3	2
Extracción de acuíferos	1,876	59	28
Recarga de acuíferos	997	32	15
Sobreexplotación	879	28	13

Contrato Atotonilco de Prestación de Servicios

Una adecuada predicción del monto de inversión en la planta y de la multi-anualidad por contraprestación del servicio permitió la contratación del servicio en un tiempo récord de seis meses.

1. La SHCP autorizó a CONAGUA, previo a la licitación, una multianualidad basada en los costos anuales totales del tratamiento:

Estimación de CONAGUA 1,074 M\$ por año

Propuesta ganadora 1,066 M\$ por año

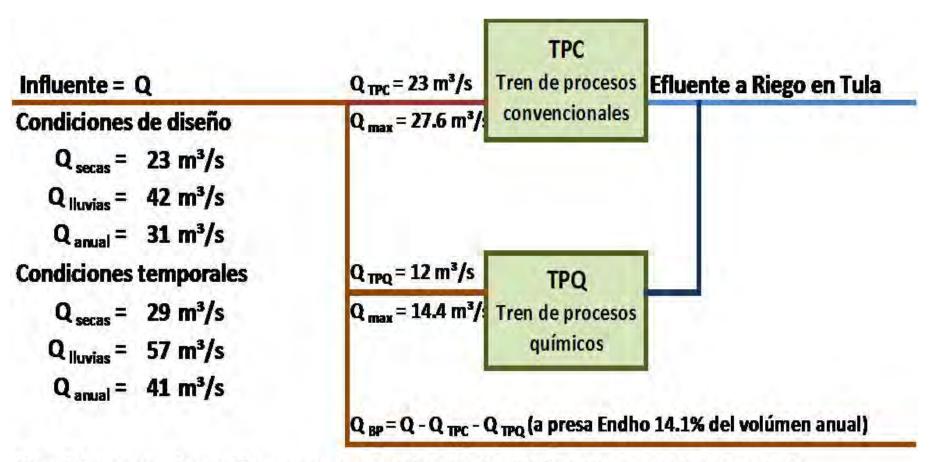
• Diferencia - 0.8%

2. La SHCP autorizó, previo a la licitación, un subsidio al proyecto basado en el monto estimado de la inversión inicial:

Estimación de CONAGUA 9,264 M\$

Propuesta ganadora 9,394 M\$

• Diferencia + 1.4%


Datos económicos y financiero de la PTAR Atotonilco (pesos octubre 2009)

Monto total de la inversión: 10,022 M\$

Inversión en la construcción de la PTAR, M\$				
Aportación FONADÍN: 4,600 M\$				
Capital de riesgo:		20.00%		
Crédito		31.02%		
Costo anual total, M\$/año				
Caudal medio tratado probabil.		m³/s		
Población equivalente		M m³/día		
12 millones de habitantes		M m³/año		
Costo unitario de tratamiento		\$/m³		
		\$/año/hab		
Costo per cápita		\$/mes/hab		
	4,600 M\$ Capital de rie Crédito M\$/año probabil. valente abitantes	4,600 M\$ Capital de riesgo: Crédito M\$/año probabil. 33 valente 2.9 abitantes 1,043 ratamiento 1.05		

Capacidades y procesos de PTAR Atotonilco

Diagrama de funcionamiento hidráulico

Nota: Este esceneario considera que se construirán todas las PTARs del Programa de Saneamiento

Producción de lodos en la PTAR Atotonilco

Lodo	Concentración de sólidos	Peso seco t/año
Lodo químico	5.0%	95,000
Lodo primario espesado	6.8%	166,000
Lodo secundario espesado	4.0%	94,000
Lodo a digestores	5.3%	354,000
Lodo deshidratado a mono-relleno	28.0%	243,000*

*Equivalente a 2,400 m³/día of lodo húmedo = 1 camiones de 20 m³ cada 12 min

Balance de energía y emisión de gases efecto invernadero GEIs, PTAR Atotonilco

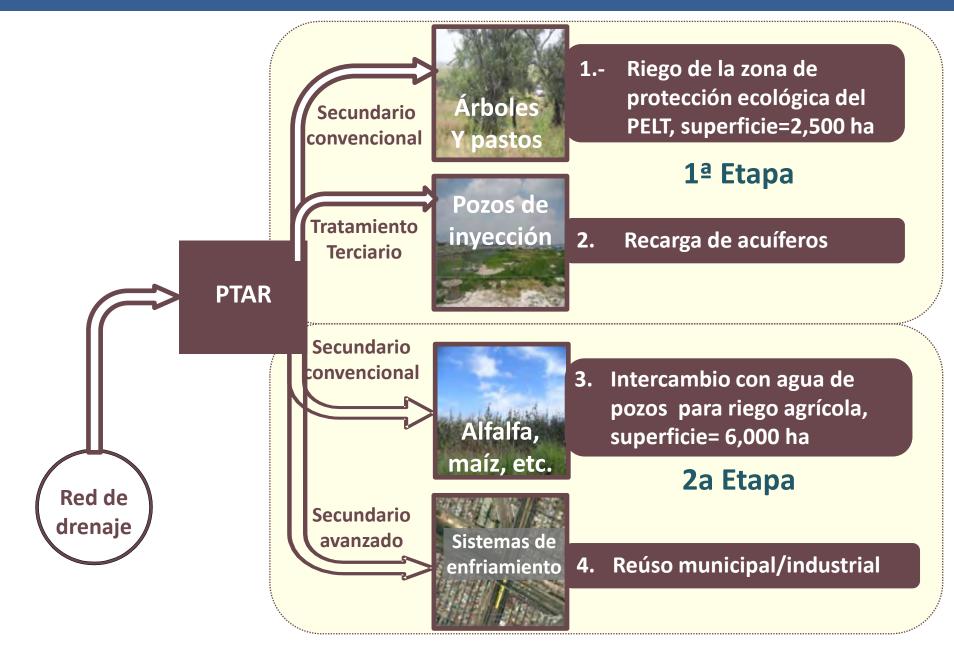
Consumo de energía	245	GW-hr por año
Energía generada en planta	200	Gw-hr por año
Potencia instalada de co-generación	32	Mw
Reducción en la emisión de GEIs	145,000	t CO ₂ Eq. por año*

^{*}Metodología AM0080, UNFCCC, Executive Committee

Calidad de diseño del influente a la planta

		Estiaje		Lluvias			
		Promedio	Promedio	Promedio	Promedio	Promedio	Promedio
Parámetro	Unidad		máximo	Máximo		Máximo	Máximo
		Estacional	Mensual	Diario	Estacional	Mensual	Diario
Temperatura	°C	19	21	22	21	22	24
Potencial Hidrógeno	U pH	6.5 – 8.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5
Alcalinidad total	mg/L CaCO ₃	441	470	475	345	382	434
SST	mg/L	250	300	400	400	500	600
SSV	mg/L	150	180	240	250	310	380
DBO ₅ total	mg/L	250	275	390	200	220	250
DBO ₅ soluble	mg/L	140	180	200	120	132	150
Nitrógeno Kjeldahl total	mg/L	40	45	50	25	30	35
Fósforo total	mg/L	12	14	16	9	11	12
Aceites y Grasas	mg/L	90	100	120	35	40	45
Sulfuros	mg/L	10	13	15	5	10	12
Coliformes Fecales	NMP/100mL	6.00 E+07	4.46E+07	2.00E+8	1.0 E+08	1.00E+9	2.50E+09
Huevos de Helmintos	H/L	2	3	4	4	5	7

Calidad del efluente del TPC


Parámetro	Unidades	Promedio Mensual	Máximo Diario	
Temperatura	Grados Celsius	Condiciones Naturales + 1.5	Condiciones Naturales + 2.5	
Potencial Hidrógeno	Unidades de pH	5 -10	5 – 10	
Grasas y Aceites	mg/l	15	25	
Materia Flotante		Ausente	Ausente	
Sólidos Sedimentables	ml/l	1	2	
SST Estiaje	ma/l	40	60	
Lluvias	mg/l	70	105	
DBO ₅ Estiaje	mall	30	60	
Lluvias	mg/l	35	60	
Coliformes Fecales	NMP/100 ML	1,000	2,000	
Huevos de Helminto	Huevos por Litro	1.0	3.0	
Cloro residual	mg/l	0.5	1.0	

Calidad del efluente del TPQ

Parámetro	Unidades	Promedio Mensual	Maximo Diario
Temperatura	Grados Celsius	Condiciones Naturales + 1.5	Condiciones Naturales + 2.5
Potencial Hidrógeno	Unidades de pH	5 -10	5 – 10
Grasas y Aceites	mg/l	15	25
Materia Flotante		Ausente	Ausente
Sólidos Sedimentables	ml/l	1	2
Sólidos Suspendidos Totales	mg/l	75	150
DBO ₅ Total	mg/l	100	200
Coliformes Fecales	NMP/100 ML	1,000	2,000
Huevos de Helminto	Huevos por Litro	1.0	3.0
Cloro residual	mg/l	0.5	1.0

Unidad de saneamiento y reúso El Caracol

Cuatro módulos independientes de 1 m³/s cada uno

Viveros para la producción de diversas especies

Comisión Lago de Texcoco

Áreas forestadas

