Application of Water Resources Management Mitigation Practices in the Southwestern Desert Region of The United States

Mario R. Lluria

Hydrosystems, Inc. Phoenix, Arizona, U.S.A.

Arizona

Estado Del Gran Cañon Del Colorado The Grand Canyon State

Bienvenidos Amigos Welcome

Phoenix

The Southwest Desert Region

Arizona

California

New Mexico

Nevada

♦ Utah

Climate and Water Distribution Climate - Semiarid

Surface Water – Seasonal and limited

- Winter: Pacific fronts major
- Summer: Tropical fronts minor
- El Niño: Dry / La Niño / wet
- Major drainages:
 - Colorado River Rocky Mountains
 - Rio Grande Rocky Mountains
 - San Joaquin and San Fernando Rivers Sierra Nevada

<u>Groundwater – Uneven geographic distribution</u>

- In low desert region: Alluvial
- In mountains and Colorado Plateau: Bedrock aquifers

Regional Historic Water Use

Late 1800s to mid 1900s

Development of Agriculture

The Reclamation Act

Large Irrigation Projects (U.S.B.R.)

The Salt River Project

Intensive use of groundwater

Ag. chemicals pollute groundwater: NO3, DBCP, EDB

Mid 1900s to Present

Los Angeles, San Diego, Phoenix, Las Vegas, Albuquerque, Salt Lake City, Tucson

Industry displaces agriculture as revenue source

Ag wells converted to potable wells

Industrial chemicals pollute groundwater: VOCs, gasoline

Roosevelt Dam

Groundwater Mining

Intense in the Agricultural Areas Examples: Central Valley, Imperial Valley, CA

- Central valley, imperial valley, CA
- Salt River Valley, Pinal County, AZ

Unregulated Abstraction

Groundwater Mining Effects

Aquifer depletion

- Increase in pumping lift
- Change of groundwater flow regime: cones of depression closed basins

Land subsidence

- Fissures
- Infrastructure collapse

Groundwater quality deterioration

Applied Mitigation Practices for Aquifer Restoration

- Conservation
- Importation
- Augmentation and recharge
- Purchase and retirement of groundwater rights
- ♦ Re-use
- In situ and wellhead treatment
- Regulatory enforcement

The State of Arizona Groundwater Code The Groundwater Management Act of 1980

Establishes Active Management Areas (AMA)

 Guides and mandates progressive reduction of groundwater use

Promotes augmentation

Encourages re-use

Water Importation

- Arizona, California, Nevada and Utah directly import water from the Colorado River. Arizona, California and Utah built large aqueducts
- Colorado River water is allocated to each state by agreement. Regulated by the federal government: The Law of the River
- Arizona vs. California: 1963 Supreme Court Decision
- In Arizona groundwater can not be exported from one basin to another basin

Central Arizona Canal

Water Re-Use

Soil Aquifer Treatment

Water Re-use in Phoenix The Water Campus Facility

Augmentation and Groundwater Recharge

Conjunctive Use

Conjunctive Water Management

"Is the management of surface and groundwater resources in a coordinated operation to the end that the total yield of such a system over several years exceeds the sum of the yield of the separate components of the system that would result from uncoordinated operations"

<u>Yields:</u>

SWoperation= AGW operation= BCWM operation= Z

Conjunctive Use Management Artificial Groundwater Recharge

Methods

- Direct surface
 - Channel modification T/L levees
 - Basins in-channel / off-channel
 - Pits / trenches

Direct subsurface

- Injection wells
- Vadose zone (dry)wells

Conjunctive Use Management Water Reuse

Waste water treatment process

Reclaimed water

- Quality
- Disposal
- Permissible uses
- Regulations

Soil aquifer treatment

- Methodology
- Water recovery

Conjunctive Water Management

Objectives

- Increase yield
- Increase the reliability of supply
- Improve the efficiency of a water system

Procedure

Divert and convey surplus surface water when available for aquifer storage in basins for later use when surface water is scarce or not available

Methods of Conjunctive Use Two Major Types

Alternative conjunctive use
 Comprehensive conjunctive use

Alternative Conjunctive Use In General

Dry weather cycle

- Use of groundwater exceeds use of surface water

Wet weather cycle

 Use of surface water exceeds use of groundwater

Comprehensive Conjunctive Use System Components

- Surface storage Dams/reservoirs
- Diversion elements
- Conveyance units
- Underground storage (recharge) facilities
- Abstraction (recovery units wells
- ◆ Water treatment plants W.T.P. and W.R.P.

Some components of the system may not be needed in the system or may be added later when the need arises example SRP

Comprehensive Conjunctive Use

Aquifer Storage is Essential

Aerial View of Two Orange Country Water District Percolation Ponds known as the Warner Basin and the "Little" Warren Basin

Comprehensive Conjunctive Use System

Comprehensive Conjunctive Use Projects: Types

Stream diversions

- Dam and reservoirs
- Aqueducts

 Total system (dams, reservoirs and aqueducts)

Central Arizona Project Features

- Imports Colorado River water to central and southern Arizona
- Distributes Arizona's Colorado River water allocation
- ♦ A result of the Arizona vs. California law suit
- Operated and managed by a State Institution the Central Arizona Water Conservation District (CAWCD)
- Delivers water for irrigation and municipal use

Purpose

Securing a dependable water supply by <u>Water Banking</u>

Finalidad

Asegurar el suministro de agua de manera confiable usando el *'Banco de Aguas'*

Conjunctive Use in Nevada Las Vegas Valley

Supply for the city of Las Vegas – Very rapid population growth

Two water sources

- Colorado River water
- Groundwater

Colorado River water WTP on Lake Mead

- For direct use
- For groundwater recharge

Water management entities

- Southern Nevada Water Authority Las Vegas Valley Water District

Conjunctive Use in Nevada

 Use of ASR wells for recharge and recovery of surface water stored in the aquifer

 Recharge is predominantly done in the winter. Recovery in the summer

 No concerning impacts to the groundwater quality

The largest ASR well field in the USA

Conjunctive Use in Nevada City of Las Vegas

Conjunctive Water Management in Arizona

Conjunctive Use in Arizona

Tucson Metropolitan area: Lower Santa Cruz Valley

- Population: 1.5 million
- Annual precipitation: 180 210 mm/y

Phoenix Metropolitan area: Salt River Valley

- Population: 5 million
- Annual precipitation: 150 200 mm/y

Conjunctive Use in Arizona Tucson

System Facilities for CAP Water

- CAP aqueduct
- 4 water-spreading recharge facilities
- One large well recharge field
- Water treatment plant

System Facilities for Reclaimed Water

- 2 large water reclamation plants
- One large recharge (water spreading) facility
- One managed river discharge

System for Groundwater

Several well fields

The Salt River Valley

Arizona

Salt River Valley Water Resources Management System Components

SRP system

CAP aqueduct

Municipalities systems

- Wells
- Water treatment plants
- Water distribution network
- Water reclamation plants

Central Arizona Canal

The Salt River Project

Delivering More Than Power.®

Conjunctive Water Management by SRP

Irrigation

Water Resources Management System Components

Surface Water

- Dams and reservoirs
- Water conveyance network: Canals and laterals
- Hydroelectric plants
- Measurement and monitoring network
- Operation and control stations

Water Resources Management System

Dams and Reservoirs

Verde River

- Horseshoe 162E6 M³
- Bartlett 220E6 M³

Salt River

- Roosevelt 3,082.5E6 M³
- Horse Mesa 302E6 M³
- Mormon Flat 71E6 M³
- Stewart Mountain 86E6 M³

Salt River Project Reservoir System

Water Resources Management System

Water Conveyance

Canal 210 KM

Laterals 320 KM

Total 530 KM

Arizona Canal

Water Resources Management System

Components

Groundwater

- Wells Production
- Wells Recharge
- On site water treatment plants
- Water spreading recharge projects

Salt River Project Water Users' Area and Canal System

SRP

Water Resources Management System

Groundwater

♦ Well

- 250 wells
- Mean depth 370M
- Mean capacity 180-200 L/S

Recharge

- GRUSP 1235E6 M³/Y
- NAUSRP 302E6 M³/Y
- Wells 12E6 M³/Y

Water Resources Management System

Groundwater System

◆ Total pumping capacity – 1.0E9 M³/Y

 Total underground storage capacity – 260E6 M³/Y

GROUNDWATER RECHARGE

Granite Reef Underground Project, Phoenix, Arizona, USA. Aerial view of delivery and recharge components

Recharge System Operation

Water Resources Management

SRP Water Order

Groundwater Recharge Facilities

Compatibility (Chemical + Physical + Biological)

The surface and groundwater system are fully integrated and operate as a single unit by Conjunctive Water Management

Water Sources

- Salt and Verde Rivers Water
- Groundwater
- Central Arizona Project (CAP) Water
- Reclaimed Water (in the future)

GRUSP Source Water Blending

Verde in S. Salt in S. Cap in S.

Conjunctive Use in Arizona NAUSP Facility

Aquifer storage – Multi source

For CAP, SRP and reclaimed water

♦ Capacity: 1,200 E6/y

Interagency project

PHOTO: C AerialExpress October 2003

Figure 1 Project Aerial Photograph and Site Location Cartographic & GIS Services 5/3/2004 CRAINING METHODAL COMPANY

Well Recharge

Salt River Project Wells

Phase III: Rotating + Cylindrical Filter

Conjunctive Use in Arizona The Water Campus Facility

Scottsdale, Arizona

 An AWWT plant: The most advanced technology 80,000 m³/d

♦ A WTP for CAP water: 200,000 m³/d

Aquifer storage using vadose zone wells

Conjunctive Use in Arizona The Water Campus Facility

Functions

Treat CAP water to potable grade

Treat municipal effluent to advanced II

Treat advanced II to potable grade

Aquifer storage by:

- Vadose zone wells SAT
- Injection wells

Conclusions

The use of Conjunctive Water Management will maximize the efficiency and costeffectiveness of a water system. This water system could be for irrigation, urban, industrial or multi-purpose. The application of this water management practice has been very successful in the semiarid areas of the Southwestern United States but is also applicable in more humid regions