Alaska Wetlands Map from Satellite L-Band Synthetic Aperture Radar

A 100-meter resolution wetlands map of Alaska has been developed using JERS-1 SAR imagery. Whitcomb, Moghaddam, McDonald, Kellndorfer, and Podest, 2009

L-band Radar Imagery from JERS-1 Boreal Mapping Mission

Winter

Significant pass-to-pass striping, pointing to temporal scene variations

Summer

Wetlands Classification Approach

- The Alaska radar mosaic is divided into 9 tiles, and each tile classified separately, with enough overlap to ensure consistency of class definitions
- 100m resolution
- Example data layers for a tile:

Tile A5 DEM

Tile A5 open water

Tile A5 texture

Tile A5 acquisition date

Wetlands Classification Approach

- Ground reference data set primarily from National Wetlands Inventory (NWI)
- NWI uses Cowardin's classification system (1979) for the US
- Nonwetlands classes from Alaska Geospatial Data Clearinghouse (AGDC)

NON-WETLAND:

Open Water Change- North Slope, Alaska

Flood Pulse of Amazonian Wetlands: ALOS ScanSAR Time Series

An ALOS Kyoto & Carbon Initiative Wetlands Theme Product

Start date: 4 Nov 2006 End date: 7 Nov 2007 Repeat interval: 46 days

ALOS PALSAR, ScanSAR mode L-band, HH-pol 350-km swath width 100 m pixel

Sample raster product for Piagaçu-Purus Reserve, Brazil

Sample vector product for Piagaçu-Purus Reserve, Brazil

	No.	LCLevel4	LCLevel5	LCLevel6	LCL evel7	FID at e1	FID ate2	FID ate3
പ്രപ്പു	45	Woody	Tree	Closed	Tall	0	0	0
	46	Woody	Tree	Closed	Tall	0	0	0
	- 60	Woody	Tree	Closed	Tall	0	0	0
	61	Woody	Tree	Closed	Tall	0	0	0
	65	Woody	Tree	Closed	Tall	1	1	0
	66	Woody	Tree	Closed	Tall	1	1	0
-7 ° L	67	Woody	Tree	Closed	Tall	1	0	0
() <u> </u>	69	Woody	Tree	Closed	Tall	1	0	0
j Chi	70	Woody	Tree	Closed	Tall	1	1	0
	71	Woody	Tree	Closed	Tall	1	1	0
7	79	Woody	Tree	Closed	Tall	1	1	1
Tray of	80	Woody	Tree	Closed	Tall	1	1	1

- Raster products (wetland extent, vegetation cover, and inundation period) synthesize flooding information from many dates

- Knowledge of flooding state on individual dates is important for crossproduct comparison and use in models, but would increase product volume by roughly 10x if presented in raster format

- Flooding state for specific dates is therefore formatted as shapefile and attribute (dbf) file giving flooding status for all available dates for each image object

- Attribute file also includes presence/absence of seasonal aquatic macrophytes, and LCCS hierarchical classes

McDonald et al.

Wetland Classification of the Chaya Basin

Wetland Classification of the Chaya Basin- cont.

Accuracy assessment was based on validation pixels not used for training. Accuracy varied between 2% and 20% according to class. However, because of limited ground truth data, these values may vary.

Monthly Inundated Area

QuikSCAT and AMSR-E

Inundated Area Fraction

